
CSC8502 Advanced Graphics for Games

Contents

1 Overview 3

1.1 3D Graphics . 3

1.1.1 Primitives . 3

1.2 Graphics Pipeline . 3

1.3 OpenGL . 4

2 Transformations 5

2.1 Spaces . 5

2.2 Scale . 5

2.3 Translation . 5

2.4 Rotation . 5

2.5 Perspective . 6

2.5.1 Orthographic . 6

2.5.2 Perspective . 6

2.5.3 Perspective Divide . 7

2.6 Object definition . 7

2.7 MVP matrix . 7

3 Vertex/Geometry Operation 8

3.1 Amplification (Tessellation Shader) . 8

3.2 Generation (Geometry Shader) . 8

3.3 Clipping . 9

3.4 Face Culling . 9

4 Fragment Operations 10

4.1 Interpolation . 10

4.2 Scissor testing . 10

4.3 Stencil testing . 10

4.4 Depth Buffer / Depth Test . 10

4.5 Blending . 11

5 Texture Mapping 12

5.1 Affine Transform . 12

5.2 Bilinear Filtering . 12

5.3 MIP mapping / minification . 12

5.3.1 Trilinear filtering . 13

Friday 20th January, 2017 (08:26) 1

CSC8502 Advanced Graphics for Games

6 Scene Management and Hierarchy 14

6.1 Handling Transparent Objects . 14

6.2 Early Z test . 14

6.3 Frustum Culling . 14

6.4 Scene Graphs . 14

7 Animation 15

7.1 Skinned meshes . 15

8 Lighting 16

8.1 Normals . 16

8.1.1 Normal Matrix . 16

8.2 Lighting Models . 16

8.3 Phong Reflection Model . 16

8.4 Bump mapping . 17

8.5 Shadow mapping . 18

8.5.1 Issues . 18

8.6 Deferred Rendering . 19

8.6.1 Light volumes . 20

8.6.2 Workflow . 20

9 Post processing 21

Course material: https://research.ncl.ac.uk/game/mastersdegree/graphicsforgames/

Friday 20th January, 2017 (08:26) 2

https://research.ncl.ac.uk/game/mastersdegree/graphicsforgames/

CSC8502 Advanced Graphics for Games

1 Overview

1.1 3D Graphics

• Scene made up of objects made up of primitives

• Primitives are a collection of vertices

• Vertices have attributes (position, colour, texture coordinate, etc.)

1.1.1 Primitives

v2

v1

v3
v4

v5

(a) Point

v2

v1

v3
v4

v5

(b) Line

v2

v1

v3
v4

v5

(c) Line Strip

v2

v1

v3
v4

v5

(d) Triangle

v2

v1

v3
v4

v5

(e) Triangle Strip

v2

v1

v3
v4

v5

(f) Triangle Fan

Figure 1

1.2 Graphics Pipeline

Friday 20th January, 2017 (08:26) 3

CSC8502 Advanced Graphics for Games

Figure 2: OpenGL Pipeline

1.3 OpenGL

Useful (somewhat) OpenGL related stuff to know:

• Buffers

– OpenGL buffers are generated from data in main memory

– Buffer generation copies data to graphics memory

– Data in main memory is no longer required

– OpenGL buffers can be bound to CPU memory addresses to modify buffer contents

• Shaders

– Operate per item (per vertex for vertex and tessellation shaders, per primitive for geometry
shader, per fragment for fragment shader)

– Data common to all shaders passed as uniforms

Friday 20th January, 2017 (08:26) 4

CSC8502 Advanced Graphics for Games

2 Transformations

2.1 Spaces

World
3D space containing everything

Camera
3D space containing the view from the camera
Origin is camera position
Obtained through camera transform

Clip
Only the primitives that can be seen by the camera
Obtained through perspective transform

Normalised Device Coordinates
Transformed from clip space
Coordinates normalised to 1 for hardware compatibility

Viewport Coordinates
Coordinates on a particular screen

2.2 Scale

Scale matrix to scale by x, y and z is each respective axis:
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

2.3 Translation

Translation matrix to move by x, y and z is each respective axis:
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

2.4 Rotation

Rotation about x axis by θ:
1 0 0 0
0 cosθ sinθ 0
0 −sinθ cosθ 0
0 0 0 1

Rotation about y axis by θ:

cosθ 0 sinθ 0
0 1 0 0

−sinθ 0 cosθ 0
0 0 0 1

Friday 20th January, 2017 (08:26) 5

CSC8502 Advanced Graphics for Games

Rotation about z axis by θ:
cosθ sinθ 0 0
−sinθ cosθ 0 0

0 0 1 0
0 0 0 1

2.5 Perspective

Perspective matrix used to give perspective to camera space.

Figure 3: Perspective (left) vs Orthographic (right)

2.5.1 Orthographic

Simple clip to a defined box defined by vertices (left, bottomnear) and (right, top, far).

P =

2

right−left 0 0 − right+left
right−left

0 2
top−bottom 0 − top+bottom

top−bottom

0 0 2
far−near − far+near

far−near

0 0 0 1

Typically used for ”flat” elements, e.g. menu, HUD, etc.

2.5.2 Perspective

Traditional perspective as perceived in real life.

P =

f

aspect 0 0 0

0 f 0 0

0 0 near+far
near−far

2·near·far
near−far

0 0 −1 0

where:

f =
1

tan(fov/2)

and fov is the desired field of view.

x and y
Used to obtain distance along x and y axis with relation to z and fov

z
Scale and translate z position such that z is in the range -1 to 1 after division by w

Friday 20th January, 2017 (08:26) 6

CSC8502 Advanced Graphics for Games

w
Set to w = −1 · z = −z, this is used for the perspective divide

2.5.3 Perspective Divide

https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Perspective_divide

Have a vector V for a vertex:

V =

Vx
Vy
Vz
w

Divide components of V by w. This operation moves objects that are further away (in z axis) closer to
the centre of the screen, this gives the effect of a vanishing point.

2.6 Object definition
rxx rxy rxz x
ryx ryy ryz y
rzx rzy rzz z
0 0 0 1

Vx
Vy
Vz
1

(x, y, z) is the object position.

r is the object orientation.

(rxx, rxy, rxz) is the object left vector.

(ryx, ryy, ryz) is the object up vector.

(rzx, rzy, rzz) is the object facing vector.

The vertices of the object V are transformed using the object matrix.

2.7 MVP matrix

Three stages of the standard transformation pipeline:

Model
Local space to the world space

View
World space to camera space

Projection
Camera space to clip space

Friday 20th January, 2017 (08:26) 7

https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Perspective_divide

CSC8502 Advanced Graphics for Games

3 Vertex/Geometry Operation

3.1 Amplification (Tessellation Shader)

https://www.khronos.org/opengl/wiki/Tessellation

• Tessellator runs after vertex shader

• Operates on patch primitives (generic n-sided primitive)

• Outputs tessellated geometry in either: triangles, quads or isolines

• Tessellation Control Shader is used to set tessellation level and perform any required patch trans-
formations

(Tessellation Control Shader is optional)

• Tessellation Evaluation Shader takes abstract coordinates generated by the tessellator and the
patch coordinates and calculates the vertices of the output geometry

(Tessellation Evaluation Shader is mandatory)

• Level of tessellation is set for inner and outer regions of tessellated geometry

– Inner level controls tessellation inside the area

– Outer level controls tessellation outside the area

– Edges that are shared between two tessellated areas must share the same outer tessellation
level and vertex calculation to ensure continuity between areas

(a) Triangle (b) Quad (c) Isoline

Figure 4: Tessellation levels

3.2 Generation (Geometry Shader)

https://www.khronos.org/opengl/wiki/Geometry_Shader

• Geometry shader runs after tessellator

• Takes single primitive as input and outputs zero or more new primitives (limited types of primitives
supported: points, lines & triangles)

• Used to generate new (additional) geometry based on (limited) existing geometry

• e.g. basic graphical particle system in which points are sent to the GPU pipeline and are converted
into quads by the geometry shader

This saves (75%) CPU time copying primitives to the GPU

Friday 20th January, 2017 (08:26) 8

https://www.khronos.org/opengl/wiki/Tessellation
https://www.khronos.org/opengl/wiki/Geometry_Shader

CSC8502 Advanced Graphics for Games

3.3 Clipping

https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Clipping

• Remove geometry outside of viewing volume, reduces GPU load in rasterising (parts of) primitives
that will never be seen

• Whole primitives that are outside viewing volume are simply culled as a whole

• Primitives that are partially outside are split at the boundary of the viewing volume and new
primitives are created as needed to fill any space created inside the viewing volume (e.g. in the
case of triangle clipping)

3.4 Face Culling

https://www.khronos.org/opengl/wiki/Face_Culling

• Removes (culls) faces that will not be seen due to facing away from the camera

• Can cull front, back or all faces

Culling all faces effectively disables the rasteriser for triangle based primitives

• Front and back faces are determined by the winding order of the vertices of triangles

Friday 20th January, 2017 (08:26) 9

https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Clipping
https://www.khronos.org/opengl/wiki/Face_Culling

CSC8502 Advanced Graphics for Games

4 Fragment Operations

https://www.khronos.org/opengl/wiki/Per-Sample_Processing

4.1 Interpolation

Lines

Colour at point p computed through simple linear interpolation between vertices v0 and v1.

Cp = (Cb ∗ t) + (Ca ∗ (1− t))
t = |(v1 − p)/(v1 − v0)|

Triangles

Use Barycentric coordinates.
Cp = (α ∗ Ca) + (β ∗ Cb) + (γ ∗ Cc)

4.2 Scissor testing

https://www.khronos.org/opengl/wiki/Scissor_Test

• Fragments outside of a given rectangle on the screen are discarded

• Can set unique scissor box per viewport

4.3 Stencil testing

https://www.khronos.org/opengl/wiki/Stencil_Test

• Uses additional buffer attached to active framebuffer

• Each fragment has a stencil value

• Stencil value of a given fragment is tested against value in stencil buffer, if the test passes the
fragment is used

• Operation on stencil buffer can be configured based on the result of the stencil and depth tests:
keep current value, set to zero, invert current value, replace current value, increment, decrement,
increment with wrap, decrement with wrap.

• Test is configurable: always, never, =, 6=, <, ≤, >, ≥

• Initial fragment stencil value is given for all fragments when configuring the stencil test

• Stencil testing can be performed on either front or back faces of a primitive, or both (state is held
for both faces)

4.4 Depth Buffer / Depth Test

https://www.khronos.org/opengl/wiki/Depth_Test

Have a depth buffer which records the depth (z coordinate) of the fragment that has been rendered on
a each pixel.

Friday 20th January, 2017 (08:26) 10

https://www.khronos.org/opengl/wiki/Per-Sample_Processing
https://www.khronos.org/opengl/wiki/Scissor_Test
https://www.khronos.org/opengl/wiki/Stencil_Test
https://www.khronos.org/opengl/wiki/Depth_Test

CSC8502 Advanced Graphics for Games

1 When a pixel is to be shaded compare the z coordinate of the new fragment with that in the depth
buffer Di

2.1 If x ≤ Di then depth test passes, the pixel is shaded based on the new fragment and the depth
buffer updated

2.1 Otherwise the test fails and the fragment is discarded

3 The depth buffer is rest to maximum depth at the start of each frame

Can have ”z fighting” when two objects with close z coordinates are rasterised inside each other. A
higher precision depth buffer avoids this.

4.5 Blending

https://www.khronos.org/opengl/wiki/Blending

Transparency denoted by alpha value in colour.

α = 1 denotes full opacity, α = 0 denotes full transparency.

Colour computed by blend equation:

C = (Csource ∗ Fsource) + (Cdest ∗ Fdest)

Factors Fsource and Fdest are usually programmable but a common approach is standard linear blending:

Fsource = α

Fdest = 1− α

One other alternative is additive blending:

Fsource = 1

Fdest = 1

Friday 20th January, 2017 (08:26) 11

https://www.khronos.org/opengl/wiki/Blending

CSC8502 Advanced Graphics for Games

5 Texture Mapping

• Texture coordinates (u, v) defined per vertex

• Coordinated interpolated to obtain per fragment texture coordinates

• (u, v) are normalised texture coordinates within [0, 1]

• Textures coordinates out of the [0, 1] can be handled differently:

Clamp
Anything above 1 is set to 1
Anything below 0 is set to 0

Repeat
1.1 = 0.1
−0.1 = 0.9
etc.

Mirror
1.1 = 0.9
−0.1 = 0.1
etc.

• All textures for a mesh typically stored in a single texture image

5.1 Affine Transform

Textures may not appear correctly if an object is tilted with respect to the camera.

Caused by texture interpolation being linear but not fragment area.

Solution is to use affine transform:

1 Divide texture coordinates by Pw

2 Interpolate texture coordinates

3 Multiply by Pw

5.2 Bilinear Filtering

• When a texture is viewed close enough to the camera such that the rasterised object takes up more
pixel space than the texture image

• Sample multiple texels and blend them together

e.g. for texel coordinate 7.6 blend colour of texel 7 and 8 by factor 0.6

5.3 MIP mapping / minification

• Generating smaller textures using the original fill size texture so that objects further away can
sample a smaller texture

• Forms a set of textures in decrecing size, known as a MIP chain

• MIP map is selected using the level of detail (LOD) λ

• This is calculated using the derivatives of the interpolated x and y texture coordinates, i.e. how
fast the texture coordinates are changing

Friday 20th January, 2017 (08:26) 12

CSC8502 Advanced Graphics for Games

• Faster change in texture coordinates (higher λ) means less unique texels hence less detail. The size
of λ denotes how far down the MIP change the texture is selected

• MIP chain is pre processed when the texture is loaded

• Requires more memory to store entire MIP chain opposed to a single texture, but gives faster
processing as less work needs to be done during rasterisation and gives a better texture quality due
to texel averaging

5.3.1 Trilinear filtering

• Similar to bilinear filtering (operating in x and y axes) but also operating in z axis to interpolate
between two MIP map levels

• Solves issue when an object spans multiple MIP levels and a noticeable line where the texture
quality changes can be seen

Friday 20th January, 2017 (08:26) 13

CSC8502 Advanced Graphics for Games

6 Scene Management and Hierarchy

6.1 Handling Transparent Objects

Need to ensure transparent objects are drawn in the correct order. Solution is to add a ”transparency”
tag to each node.

When processing objects:

1 Traverse the tree and build a list of opaque objects and a list of transparent objects

2 Render all the opaque objects

3 Sort the list of transparent objects by their z position

4 Render transparent object from furthest away to closest

6.2 Early Z test

• Sorting nodes by depth can also be used to make optimal use of the early Z test

• Early Z test happens before the fragment shader is executed

• If opaque objects are drawn from front to back then occluded objects will fail the early Z test and
the fragment shader will not run for occluded fragments

• (Hardware specific feature so is difficult to explicit enable or disable it or detect if it is taking place)

6.3 Frustum Culling

• Discard entire objects if they are not in the viewing frustum of the camera

• Frustum represented as 6 infinite planes

• Each object must have a bounding volume, this should be a rough estimation that can be quickly
tested for interface with a plane

Common shapes include spheres and axis aligned bounding boxes

• (there was plane equation stuff in the notes here, it is covered in CSC3503 notes in more detail so
look there)

• Frustum is derived from the projection view matrix

• Extract each axis from VP matrix and add/subtract from the w axis to obtain plane normals
(which then need to be normalised)

6.4 Scene Graphs

• Hierarchical tree structure of meshes

• Each mesh has a model matrix that gets applied to it and all its children

• Typically use a tree as shallow as possible to reduce traversal time

• Can include many other (non graphical) objects on the tree:

– Sound emitters

– Shaders

– etc.

Friday 20th January, 2017 (08:26) 14

CSC8502 Advanced Graphics for Games

7 Animation

• Can do simple animation by manipulating a tree of objects and their model matrices

• Animation defined in several keyframes and transformations interpolated between to obtain smooth
animation

• Can combine/blend several animations that affect different parts of a model tree

7.1 Skinned meshes

• Model has internal skeleton made up of several joints which can be positioned and rotated relative
to each other

• Use a mesh (skin) for a subsection of (or entire) skeleton and set position of vertices on the mesh
using weightings based on joint positions

• Two variants:

– Each skin vertex has a position and a set of joints it is influenced by

– Each vertex is relative to a number of anchors

Each anchor has a position and a joint it is relative to

• Final position of a vertex of the skin is determined by position of all its reference points

Influence of each reference point is determined by a weightings which are stored with the skin
vertex (sum of all weights for a single vertex equals 1)

• position =
∑

(t · v) · w
t Joint transform

v Vertex or weight relative position

w Weight

• Process of assigning weights to the skin (”rigging”) is performed offline by the artist

• Skinning can be performed on the GPU

– Skeletal transformation data can be sent as a large uniform array or sampled from a texture

– Vertices require additional attributes, e.g. anchor positions, weightings, joint indices

– Must enforce a maximum number of joints that a single vertex can be influenced by due to
constant size constraint on shader interface blocks

– Limit on the amount of uniform data that can be sent to shader pipeline, this limits the
number of joints in a hardware skinned skeleton

Friday 20th January, 2017 (08:26) 15

CSC8502 Advanced Graphics for Games

8 Lighting

8.1 Normals

• Unit vector perpendicular to the surface

• Can be calculated using cross product of two side vectors

• Usually stored as part of the model

• Vertex normals are interpolated across the primitive

• Interpolation may cause problems if an object has sharp corners

• Cannot simply transform normals

8.1.1 Normal Matrix

• Use the normal matrix to transform normals

• Normal matrix is the transposition of the inverse model matrix

(mat3 normalMatrix = transpose(inverse(mat3(modelMatrix))))

• Preserves rotation while discarding scaling

8.2 Lighting Models

Static lighting
Combining texture with a light map.
No real time updates.
No additional computation.

Flat shading
Per surface lighting.
Single value used on a surface.
Computationally fast.

Gourard shading
Per vertex shading.
Interpolated across primitive.
More computationally expensive.

Phong shading
Per fragment lighting.
Most computationally intensive.

8.3 Phong Reflection Model

Types of light:

Ambient
Lights all faces of all objects in a scene equally

Diffuse
Light from a source that has been scattered evenly

Friday 20th January, 2017 (08:26) 16

CSC8502 Advanced Graphics for Games

Specular
Light from a source that has been reflected towards the camera

Lighting colour c of a fragment (for a single light):

c = ca + (cd + cs)× a
cd = (N · |(L− P)|)× Cd

cs = (N · 1

2
(V + L))n × Cs

a = 1− L

Lmax

where:

• ka is the constant ambient light for the scene

• Lmax is the maximum distance that a light source can be away from a source

• L is the distance from the light source to the surface

• n is the specular power (higher for shinier materials)

• Cd and Cs are colours of the diffuse and specular light

• P is the fragment position

• V is the view vector

• L is the light vector

• N is the normal

Normal N can be calculated using two side vectors: N = (v0 − v1)× (v0 − v2)

Attenuation factor a ensures that the light gets weaker as the light source moves away from the surface.

8.4 Bump mapping

• Adds additional surface texture/bump detail to Phong lighting model

• Surface texture stored in bump map (texture) in tangent space

Must be transformed to world space before used in lighting calculations

• Perform translation using binormal (see figure 5)

B = cross(N,T)

• Transformation is performed using tangent binormal normal matrix Tx Bx Nx

Ty By Ny

Tz Bz Nz

Nw = TBN ·N

Friday 20th January, 2017 (08:26) 17

CSC8502 Advanced Graphics for Games

Figure 5: Binormal calculation
Green = Normal, Blue = Tangent, Red = Binormal

8.5 Shadow mapping

• First pass

– Obtain a shadow map for each light that can cast a shadow.

1 map for unidirectional lights, 6 maps for omnidirectional lights.

– Maps are generated by rendering the scene from the position of the light in the relevant
direction.

The map is the depth buffer.

• Second pass

– Scene rendered from point of view of camera

– Shadow matrix is passed to shaders, this is the MVP matrix used for light map in first pass

– Shadow map used to determine position of each fragment from perspective of the light

– In fragment shader compare the z component of the fragment to the value from the shadow
buffer.

If z ≤ light depth then the fragment is in front of the closest object in the shadow map,
therefore is lit by the light.a

if z > light depth then the fragment is behind the nearest object to the light so is in shadow.

• Shadow map sampling

– Shadow map is sampled similar to other textures, however a specialised sampler is used that
takes a 4 component vector and returns the result of the shadow depth test

– A bias matrix (uniform scale by 0.5, uniform translation by 0.5) is used to convert from clip
space coordinates (-1 to 1) to texture coordinates (0 to 1)

8.5.1 Issues

Surface Acne

• Depth buffer is not high accuracy, especially for objects far from the camera position (or
objects far from the light in a shadow map)

• Can cause issues when occluding objects and the surface they occlude are both visible by the
camera

• In this case additional shadows may be rendered due to error in the depth values of the
occluding and visible surfaces

Friday 20th January, 2017 (08:26) 18

CSC8502 Advanced Graphics for Games

• One solution is to offset the vertices used in the shadow map depth comparison, either towards
the camera or along their normal

This increases the difference between the two values and reduces the likelihood of error accu-
mulation affecting the result of the shadow depth test

Aliasing

• Low resolution of depth buffer for far geometry can cause poor resolution shadows

• Area of geometry far from camera/light is ”covered” by fewer samples than the same sized
area near to the camera/light

• Commonly an issue when an object is far from a light but close to the camera

• Simplest solution is to increase resolution of shadow map

8.6 Deferred Rendering

• In the conventional approach to lighting every fragment is processed by the lighting calculation
even if they are not visible in the scene

When many lights are present in the scene this can add up to a considerable amount of processing
overhead processing fragments that have no influence on the final rendered scene

This is the same with objects that are not in range of a given light

• Deferred rendering allows lighting calculations to be run in image space (the final rendered im-
age), this means that only fragments that are visible in the final rendered scene will have lighting
calculations applied to them

• Requires splitting data up into several screen sized buffers containing information used in lighting
calculations

This is known as the G-buffer

Possible contents:

– Diffuse colours

– Normals

– Depth

– Specular intensity

– Post processing flags

– (any per fragment data)

• Lighting calculations are only performed within the volume of a given light, removes calculations
for fragments that are outside of a given lights reach

• In the second pass it is already known what fragments are in the final image (from the G-buffer)
therefore no calculations take place for fragments that do not contribute to the final image

• Video memory and bandwidth can be an issue due to the large amount of space taken by the
G-buffer

• Still does not help with issue of lighting transparent objects

• May need to perform anti-aliasing on final scene to remove jaggedness from edges

Friday 20th January, 2017 (08:26) 19

CSC8502 Advanced Graphics for Games

8.6.1 Light volumes

• In second pass volumes are rendered for each light

• Light volume encapsulates area which is lit by the light

• For example, for a simple point light the volume is simple a sphere, for a spotlight it could be a
cone

• In view space a light volume could encapsulate an object that is in reality far away from the light

For this reason depth testing in the third stage must be performed

8.6.2 Workflow

1 Fill G-Buffer

• Very similar to conventional rendering process

• Transform vertex positions by MVP matrix

• Sample diffuse colour from texture

• Fill relevant data in G-buffer

2 Lighting Calculations

• Render light volumes into scene, marking fragments that may be affected by lights

• In fragment shader the world position of the fragment is reconstructed using the depth map
from the G-buffer

Can then determine if lighting calculation should be performed or if the fragment should be
discarded (if outside light volume)

• Additive blending is used to combine contributions from multiple lights

3 Generate Final Image

• Draw a screen sized quad

• Texture using blend of lighting attachment textures and diffuse texture (from G-buffer)

Friday 20th January, 2017 (08:26) 20

CSC8502 Advanced Graphics for Games

9 Post processing

• Scene is rendered into a framebuffer to allow post processing stages to manipulate the rendered
scene as a texture

• Textures are bound to framebuffers as attachments that can contain colour, depth and stencil data

• Once scene has been rendered into framebuffer the attachments can be manipulated in further
pipeline stages as regular textures

• Textures used as framebuffer attachments cannot be compressed (compression/decompression over-
head would be undesirable anyway) but can be packed (e.g. using a single texture for depth and
stencil attachments)

• A processing stage renders a single quad that fills the screen which is then textured using the colour
attachment texture from the framebuffer the scene was rendered into

• Processing stages may be cascaded using multiple processing render passes into multiple frame-
buffers

An alternative to this is ”ping-pong” texturing, in which a single framebuffer and two textures are
used and each processing stage samples from one texture and buffers to the other alternately

• As the scene render pass is available as a texture effects that depend on multiple fragments (e.g.
blur) are now possible

Such effects are not possible without this post processing stage as in the standard pipeline the
fragment shader does not have access to adjacent (or any) fragments other than the one it is
operating on

Friday 20th January, 2017 (08:26) 21

	Overview
	3D Graphics
	Primitives

	Graphics Pipeline
	OpenGL

	Transformations
	Spaces
	Scale
	Translation
	Rotation
	Perspective
	Orthographic
	Perspective
	Perspective Divide

	Object definition
	MVP matrix

	Vertex/Geometry Operation
	Amplification (Tessellation Shader)
	Generation (Geometry Shader)
	Clipping
	Face Culling

	Fragment Operations
	Interpolation
	Scissor testing
	Stencil testing
	Depth Buffer / Depth Test
	Blending

	Texture Mapping
	Affine Transform
	Bilinear Filtering
	MIP mapping / minification
	Trilinear filtering

	Scene Management and Hierarchy
	Handling Transparent Objects
	Early Z test
	Frustum Culling
	Scene Graphs

	Animation
	Skinned meshes

	Lighting
	Normals
	Normal Matrix

	Lighting Models
	Phong Reflection Model
	Bump mapping
	Shadow mapping
	Issues

	Deferred Rendering
	Light volumes
	Workflow

	Post processing

