
CSC3423 Biocomputing

Contents

1 Overview 3

2 Genetic Algorithms 4

2.1 Biological Inspiration . 4

2.2 Overview . 4

2.3 Population . 4

2.4 Evaluation . 5

2.5 Selection . 5

2.5.1 Roulette Wheel Selection . 5

2.5.2 Stochastic Universal Sampling . 5

2.5.3 Tournament Selection . 6

2.5.4 Truncation Selection . 6

2.5.5 Comparison of selection methods . 6

2.6 Crossover . 7

2.7 Mutation . 7

2.8 Replacement . 7

2.9 Knowledge Representation . 7

2.10 Tuning . 8

2.11 Machine Learning . 8

2.12 Parallel Genetic Algorithms . 9

3 Genetic Programming 10

3.1 Program Representation . 10

3.2 Initialisation . 10

3.3 Evaluation/Execution . 11

3.4 Crossover . 11

3.5 Mutation . 12

3.6 Bloat . 12

3.7 Applications . 13

4 Neural Networks 14

4.1 Multi Layer Perceptron . 14

4.1.1 Learning Task . 15

4.2 Self Organised Maps . 15

4.3 Deep Learning . 16

4.3.1 Training semi-supervised networks . 16

4.3.2 Restricted Boltzmann machine . 17

4.3.3 Convolutional Neural Network . 17

Friday 20th January, 2017 (08:26) 1

CSC3423 Biocomputing

5 Memetic Algorithms 18

5.1 Motivation . 18

5.2 Design considerations . 18

6 Swarm Intelligence 20

6.1 Ant Colony Optimisation . 20

6.1.1 Example: Travelling Salesperson Problem . 20

6.2 Particle Swarm Optimisation . 21

6.2.1 Neighbourhood types . 21

6.2.2 Algorithm . 22

7 Cellular Automata 23

7.1 1D eight rule CA . 23

7.2 2D cellular automata . 23

7.2.1 Neighbourhoods . 23

7.2.2 The Game Of Life . 24

7.3 Variants . 25

7.4 Applications . 25

8 Membrane Computing 27

8.1 Metaphor . 27

8.2 Algorithm . 27

9 DNA Computing 28

9.1 Structure of DNA . 28

9.2 Features useful for computation . 28

9.3 Experimental Techniques . 28

9.3.1 Polymerase Chain Reaction . 28

9.3.2 Electrophoresis . 28

9.4 Solving the Hamiltonian Path Problem . 29

9.4.1 Non-deterministic approach . 29

9.4.2 Stage 1: Initialisation . 29

9.4.3 Stage 2: PCR amplification . 29

9.4.4 Stage 3: Selecting paths of length |V | . 29

9.4.5 Stage 4: Selecting paths that visit all vertices . 30

9.4.6 Stage 5: Result . 30

9.5 DNA origami . 30

Friday 20th January, 2017 (08:26) 2

CSC3423 Biocomputing

1 Overview

Problem Type GA/GP/MA NN ACO PSO CA MC

Optimisation ()
Machine Learning ()
Control ()
Simulation ()

Table 1: Suitability of algorithms to problems

GA Genetic Algorithm

GP Genetic Programming

MA Memetic Algorithm

NN Neural Network

ACO Ant Colony Optimisation

PSO Particle Swarm Optimisation

CA Cellular Automata

MC Membrane Computing

Friday 20th January, 2017 (08:26) 3

CSC3423 Biocomputing

2 Genetic Algorithms

2.1 Biological Inspiration

Natural selection

Principle that every slight change in a trait that is beneficial is preserved.

Individuals that have traits that allow them to be better adapted to the environment are more likely to
reproduce, traits are then passed to later generations.

Genetics

Candidate solutions to a problem represented in a chromosome composed of several genes.

Genes are passed from generation to generation with small changes (mutations).

2.2 Overview

A B

C D

Evaluation

SelectionMutation

Crossover

Initialisation

Figure 1: Genetic Algorithm Workflow

Pseudocode

population = init_random_population()

iteration = 0

while iteration < num_interations:

evaluate(population)

population = selection(population)

population = crossover(population)

population = mutation(population)

iteration++

best = get_best_individual(population)

return best

Listing 1: Genetic algorithm pseudocode

2.3 Population

• Set of possible solutions to the problem

• Most often a set (chromosome) of variables (genes)

• Initial population created at random

Friday 20th January, 2017 (08:26) 4

CSC3423 Biocomputing

2.4 Evaluation

• Giving a ”goodness” value to each candidate solution

• Uses a fitness function which takes a candidate solution and determines how well it solves the
problem

2.5 Selection

• Choosing individuals to be in the next population

• Rewards best individuals (i.e. those with the best fitness values)

2.5.1 Roulette Wheel Selection

• Probability of selection is proportional to fitness of individual

• Make as many selections (spins of wheel) as individuals to be selected

• Individuals may be selected multiple times

A

B

F=120

F=90

E
F=40

D
F=40

C
F=70

Figure 2: Roulette Wheel Selection

2.5.2 Stochastic Universal Sampling

• Similar to Roulette Wheel Selection

• Do one spin but divide ”pointer” into as many individuals to be selected

Friday 20th January, 2017 (08:26) 5

CSC3423 Biocomputing

A

B

F=120

F=90

E
F=40

D
F=40

C
F=70

Figure 3: Stochastic Universal Sampling

2.5.3 Tournament Selection

• Select the best individual from a randomly selected subset of the population

new_population = []

while population.size() > 0:

tournament = select_random_subset(population, tournament_size)

tournament = sort_by_fitness(tournament)

new_population.add(tournament[0])

return new_population

Listing 2: Tournament selection pseudocode

2.5.4 Truncation Selection

• Keep only the best n individuals in a population

2.5.5 Comparison of selection methods

Roulette Wheel & Stochastic Selection

• Fitness proportionate

• Chance of being selected is proportionate to fitness value

• Selection becomes random when fitness values are close (e.g. in later GA iterations)

Tournament & Truncation Selection

• Rank based

• Best individual will always win a tournament

• More stable selection pressure

Friday 20th January, 2017 (08:26) 6

CSC3423 Biocomputing

2.6 Crossover

• Exchanging genes between two individuals

• Takes two individuals from the population and generates two offspring

• e.g. For a bit array, one offspring takes first section of array and second of another, and vice-versa

• e.g. For numerical genes the blend alpha operator picks a random value between the two parent
genes

2.7 Mutation

• Making small/subtle modifications to an individual

• Probability Pm of mutation can be set either per chromosome or per individual

• e.g. Randomly flipping a bit where the chromosome is a bit array

• e.g. Adding a random value to a numerical gene

2.8 Replacement

• Alternative to generational genetic algorithm

• Steady state genetic algorithm

– Elitism

– Selection chooses two parents who produce two offspring

– Offspring are inserted into the parent population, replacing the two individuals with lowest
fitness

2.9 Knowledge Representation

Nominal attributes:

• Set of rules and logic predicates

Real valued attributes:

• Hyperrectangle (n dimension rectangle)

• Hyperellipsoid (n dimension circle)

• Decision trees

• Synthetic prototypes (e.g. nearest neighbour)

• Linear classifier (separate instances of classes for classification problems)

Friday 20th January, 2017 (08:26) 7

CSC3423 Biocomputing

x

y

<=0.5>0.5

>0.5 <=0.5

A

B C

(a) Decision Tree (b) Nearest Neighbour

Figure 4

2.10 Tuning

• Required to ensure a proper evolutionary process

• GA learns well when exploration and exploitation are balanced

Exploration Directing population to unknown areas of the problem space

Exploitation Directing the population to most promising (based on fitness) parts of the problem
space

• Too much exploitation can lead to convergence to a sub-optimal solution (premature convergence)

– If population is too similar then crossover operator no longer provides effective exploration

• Too much exploration risks:

– Slowing down the learning process

– If probabilities are too high then crossover and mutation may harm the overall population
fitness

• Innovation time ti is the average time taken to create an individual with better fitness than the
current best individual

2.11 Machine Learning

Supevised learning

• Learning to solve a problem

• If output is discrete →Classification (output value known as a class)

• If output is continuous →Regression

• Use a training set to train the genetic algorithm and a testing set to verify the generated
model

• Optimise initialisation by creating initial population based on training data

Unsupervised learning

• Identifying patters/clusters

Friday 20th January, 2017 (08:26) 8

CSC3423 Biocomputing

2.12 Parallel Genetic Algorithms

• Genetic algorithms tend to be slow

• Majority of genetic operations can be parallelised (all but crossover)

• Several systems exist for this:

Master-Slave model GA cycle is is run on master, slaves perform operations

Island Model Population is divided across nodes

Cellular GA Population distributed across 2D lattice

Friday 20th January, 2017 (08:26) 9

CSC3423 Biocomputing

3 Genetic Programming

• Very similar concept to Genetic Algorithms 2

• Instead of evolving a solution, evolve a program

3.1 Program Representation

• Classic method is to represent programs as a tree representing a formula

• Modern methods can also create other representations

– e.g. Cartesian Genetic Programming creates graphs

• Internal nodes of tree are functions/operations

• Leaves are either variables/parameters or constants

– Constants can be predefined or assigned a random value within a predefined range

Example

Figure 5 shows a tree representing the equation:

4 + P3

P1− sin(P2)

/

+ -

4 P3 P1 sin

P2

Figure 5: Example Tree

3.2 Initialisation

• Initial tree is generated randomly

• Maximum depth of tree is predefined

• Strategies for generation:

Grow
Generate a tree at random with leaves up to the maximum depth

Fill
Generate a tree at random with all leaves at the maximum depth

Hybrid
For each level of depth, initialise a uniform number of trees, half of which using Grow and
half using Full

Friday 20th January, 2017 (08:26) 10

CSC3423 Biocomputing

/

+ 9

4 P3

(a) Grow

/

+ *

4 P3 P1 3.5

(b) Fill

Figure 6: Tree initialisation

3.3 Evaluation/Execution

• Evaluation is done by averaging error over all test cases, giving a fitness value

• Recursive execution is easy but inefficient

• Converting a tree to Reverse Polish Notation solves problem

for each element e:

if e is value:

push e to the stack

else if e is operator:

pop as many elements from the stack as the operator has parameters

execute the operator

push the result to the stack

return value at top of stack

Listing 3: Genetic programming execution pseudocode

3.4 Crossover

Exchange subtrees between parents.

Example

/

+ -

4 P3 P1 sin

P2

/

+ *

4 P3 P1 3.5

Figure 7: Tree crossover parents

Friday 20th January, 2017 (08:26) 11

CSC3423 Biocomputing

/

+ -

4 P3 P1 3.5

/

+ *

4 P3 P1 sin

P2

Figure 8: Tree crossover children

3.5 Mutation

Replace entire subtrees with a randomly generated subtree.

Example

/

+ -

4 P3 P1 sin

P2

(a) Before

/

+ *

4 P3 P1 3.5

(b) After

Figure 9: Tree mutation

3.6 Bloat

• Growth of program tree without improvement in fitness

• Bloat can affect any evolutionary paradigm where the representation has variable length

• Solutions:

Restrict tree depth
May affect evolutionary process making it unable to find a good solution

Simplification
Very difficult to do efficiently

Add fitness penalty to large trees
Smaller fitness for solutions with larger trees

Consider tree size in selection
When two individuals have equal fitness, prefer the smaller tree

Friday 20th January, 2017 (08:26) 12

CSC3423 Biocomputing

3.7 Applications

Regression
Reverse engineering a mathematical formula given a dataset of output values for given input values.

This gives an approximation of the original formula that created the dataset.

Generating Electronic Circuits
Tree topology defines schematic.

Leaves define component values (inductance, capacitance, etc.).

Control
Optimising gains of a PID controller.

Puzzle Solvers
e.g. FreeCell solver using hybrid genetic algorithm and genetic programming.

Generation of Audio Synhesizers
Using Cartesian Generic Programming to generate a graph structure.

Friday 20th January, 2017 (08:26) 13

CSC3423 Biocomputing

4 Neural Networks

• Connection of perceptrons

• Perceptron

– Set of inputs from other perceptrons

– Activation/transfer function

– Output value

• Connection

– Weighted

• Used for data problems (classification, regression, control)

w1

w2

w2

x1

x2

x2

output
f(xi, wi)

Figure 10: Perceptron

4.1 Multi Layer Perceptron

• Multi layer neural network where every perceptron in a layer is connected to every neuron in the
adjacent layers

– A single input layer with as many neurons as they are input parameters

– Several inner layers

– A single output layer with as many neurons as they are outputs

• Each layer represents a combination of features

– e.g. phonemes → words → sentences

• A non linear multi layer perceptron with a single inner layer with enough neurons can learn any
continuous function (universal approximation theory)

Friday 20th January, 2017 (08:26) 14

CSC3423 Biocomputing

Figure 11: Multi Layer Perceptron

4.1.1 Learning Task

• Supervised learning given a set of inputs and the expected output

• Optimise the error function 2 to obtain the smallest value of E by selecting new values of the
weights W

• Computationally difficult to do using traditional optimisation methods (e.g. steepest-descent,
Newton, etc.)

• Classic method for MLP is using backpropagation algorithm

– Two pass approach

– Calculate error of output layer

– Calculate weight updates of next layer back in turn

E =
1

n

n∑
t=1

E(x′) (1)

=
1

n

n∑
t=1

(F (x′,W)− yt)2 (2)

4.2 Self Organised Maps

• a.k.a Kohonen neural network

• Unsupervised neural network

• Maps data from a high dimensionality to a 2D lattice

Friday 20th January, 2017 (08:26) 15

CSC3423 Biocomputing

Figure 12: Self Organising Map Training

Training:

1 A new input vector is selected

2 The node with a weight vector closest to the input vector (best matching unit) is found

3 The weight vector of the BMU and it’s neighbours is modified to bring them closer to the input
vector

4.3 Deep Learning

• A neural network with lots (≥ 10) inner layers

• More inner layers allows construction/recognition of higher level features

Types:

• Purely supervised (deep NN)

– Trained using classic methods (e.g. backpropagation)

– Results in very slow training times due to network size

• Semi-supervised (deep belief networks)

– Build inner layers incrementally in an unsupervised way

– Add a final supervised layer

• Generative methods (convolutional NN)

– Each layer applies a ”filter” to the data to reduce its dimensionality

– Commonly used with image/signal processing

4.3.1 Training semi-supervised networks

1 Train first layer in an unsupervised manner

2 Fix first layer parameters and train second layer using the output of the first layer as unsupervised
input to the second

3 Repeat for all inner layers

4 Use the outputs of the final layer as inputs to a supervised layer and train using the raining data
outputs

5 Free all parameters and train entire network using a supervised approach using existing weights as
initial values

Friday 20th January, 2017 (08:26) 16

CSC3423 Biocomputing

4.3.2 Restricted Boltzmann machine

• Unsupervised neural network that learns a probability distribution over a set of inputs

• The result is it will learn to recognise recurrent patterns

4.3.3 Convolutional Neural Network

• Each layer combines ”patches” from the previous layer

• Compresses larger problems into smaller sets of features

• Filters are usually manually defined (i.e. not learned)

• Output of filtering is used to train a supervised model

• Requires neighbourhood regularity in input data (i.e. areas of a certain colour in an image)

Friday 20th January, 2017 (08:26) 17

CSC3423 Biocomputing

5 Memetic Algorithms

• Derived form the concept of traits spreading from person to person

• Combines conventional genetic algorithm (global search) with local search

• Global search allows exploration of entire problem space

• Local search allows exploration of neighbourhood of each individual to attempt to improve its
fitness

Pseudocode

population = init_random_population()

iteration = 0

while iteration < num_interations:

evaluate(population)

for i in range(len(population)):

population[i] = select_local_best(population[i])

population = selection(population)

population = crossover(population)

population = mutation(population)

iteration++

best = get_best_individual(population)

return best

Listing 4: Memetic algorithm pseudocode

5.1 Motivation

• When decomposing complex problems, subproblems may be easier to solve using either GA or local
search

• Fast to reach optimal solution using domain specific knowledge in local search operator

• Domain knowledge in local search operator can ”repair” bad individuals found by a GA

5.2 Design considerations

Baldwinism vs Lamarckism

Two alternative theories for transfer of traits between individuals of a population.

Baldwinism

• Traits acquired by an individual can be passed to its offspring

• e.g. replace an individual with its fitter neighbour

Lamarckism

• Traits acquired by an individual cannot be passed to its offspring

• e.g. individual inherits fitness but not genotype

Friday 20th January, 2017 (08:26) 18

CSC3423 Biocomputing

When to apply local search?

• After selection

• After crossover

• After mutation

In which stage of the genetic algorithm lifecycle?

• Uniformly throughout all iterations

• More in earlier or later iterations

Scope of local search?

• Entire population

• Probability of local search (fitness proportionate)

• Only individuals with specific range of fitness values

Choice of local search operator

• Use multiple, each of which having a fixed probability of being applied

• Have a fixed mapping of individuals to operator (domain specific)

• Evolve the operator choice using a GA

Other design issues

• Size of neighbourhood for local search

• Size of variations to make during local search operation

Diversity control

• Memetic algorithms naturally favour exploitation over exploration

• To ensure good evolution additional exploration must be done

• One option is to increase local search neighbourhood

Friday 20th January, 2017 (08:26) 19

CSC3423 Biocomputing

6 Swarm Intelligence

• System of ”items” collaborating to solve a task

• No external guidance/arbitration/synchronisation

6.1 Ant Colony Optimisation

• Key concept is stigmergy, the indirect communication between individuals in the system through
the environment

• In ants this is done though a pheromone trail deposited by ants as they explore a path

• Ants will always prefer to follow the path with the strongest pheromone trail

• Can be applied to any problem assuming it can be represented as a graph

– e.g. Ant-Miner: An unsupervised machine learning framework that constructs rules that
identify patters in a set of input data.

6.1.1 Example: Travelling Salesperson Problem

Close problem to actual ant colony movement.

• Graph G(N,E): N are cities and E are routed between cities

• di,j is the fixed cost of travelling between cities i and j

• Edge cost is given by a combination of:

1 Static cost: η(r, s) = 1
dr,s

2 Dynamic trace: τ(r, s) deposited by ants (initially zero)

• All ants must visit all nodes in an iteration (a tour)

• At the end of an iteration all edges that are on the best tour receive additional pheromone

• At each iteration the pheromone count for all nodes may be reduced to reduce the chances of
unpopular edges being selected in a tour

• Stopping criteria is either stagnation or a maximum number of iterations being performed.

Pseudocode

graph = init_graph(d)

place_ants()

while not stopping_criteria:

while not all_cities_visited:

for a in ants:

move_to_next_city(a)

place_ants()

graph = update_graph(tau)

return graph

Listing 5: Ant colony optimisation for TSP pseudocode

Friday 20th January, 2017 (08:26) 20

CSC3423 Biocomputing

6.2 Particle Swarm Optimisation

• General purpose optimisation for continuous variables

• Each particle searches for the optimum

• Each particle is moving with a velocity

• Each particle knows its last position and the position of its best result so far

• A particle has a neighbourhood associated with it

• A particle knows the position of the most optimal particle in its neighbourhood

6.2.1 Neighbourhood types

Figure 13: Geographical and social neighbourhoods

Figure 14: Global neighbourhood

Friday 20th January, 2017 (08:26) 21

CSC3423 Biocomputing

Figure 15: Circular neighbourhood

6.2.2 Algorithm

• In each time step a particles velocity and position are updated as per equations 3 and 4

• Particle velocity is limited to a fixed max velocity

velocity = a ∗ velocity +

b ∗ (neighbourhood best− position)+

c ∗ (local best− position)

velocity =max(velcoity,max velocity)

(3)

position = position+ velocity (4)

Pseudocode

particles = random_initial_particles()

while not stopping_criteria:

for p in particles:

fitness = evaluate(p)

if fitness > p.best:

p.best = fitness

if fitness > global_best:

global_best = fitness

for p in particles:

update_velocity(p)

update_position(p)

Listing 6: Particle swarm optimisation pseudocode

Friday 20th January, 2017 (08:26) 22

CSC3423 Biocomputing

7 Cellular Automata

• Biological inspiration is cells and cell reproduction

• Idea of a self replicating system

• Discrete systems that model complex behaviour using simple logical rules

• Collection of cells

– Oriented in an n-dimensional grid

– Have a state (taken from a finite set)

– Have a neighbourhood

– State of cell in next time step is computed using rules

– Rules define states based on current state of cells in neighbourhood

• A cellular automation is evaluated generation by generation until some stopping criteria are reached
or it is stopped manually

7.1 1D eight rule CA

• 1 dimensional gird

• Two states: 1 or 0

• 8 rules

• 256 possible rule sets

Classification of behaviour for different rule sets:

Class 1: Uniformity
Rapidly converge to a uniform state

Class 2: Repetition
Rapidly converge to a repetitive stable state

Class 3: Random
Appear to remain in a random state

Class 4: Complexity
Form areas of repetitive or stable sates while also forming structures which interact with each other
in complex ways

7.2 2D cellular automata

• Very similar to 1 dimensional CA but with larger neighbourhood

• Larger neighbourhood means more complex rules (due to larger number of possible neighbourhood
states for a given cell)

• Rule set may become too large to explicitly define

7.2.1 Neighbourhoods

Friday 20th January, 2017 (08:26) 23

CSC3423 Biocomputing

Figure 16: Examples of neighbourhoods

Left to right, top to bottom:

• Moore

• Von Neumann

• Margolus

• Extended Moore

• Extended Von Neumann

When a neighbourhood is at the edge of the 2D matrix it can either be cropped to form a smaller
neighbourhood or wrapped around the matrix.

7.2.2 The Game Of Life

Goals

A ”lifelike” result with a simple set of rules.

1 There should be no initial patters that can be proved to allow a population to grow indefinitely

2 There should be initial patters that appear to grow without limit

3 There should be initial patters that grow/change before coming to an end in one of three ways:

• Fading away completely (overcrowding or too sparse)

• Settling into a stable state that does not change between generations

• Entering an oscillating state

Rules

Whether a cell is on or off (lives or dies) in the next iteration is determined by the following rules:

Loneliness
A live cell with fewer then two live neighbours dies.

Companionship
A live cell with two or three live neighbours lives.

Overcrowding
A live cell with more then three live neighbours dies.

Reproduction
A dead cell with exactly three live neighbours becomes live.

Friday 20th January, 2017 (08:26) 24

CSC3423 Biocomputing

Constructs

Groups of cells that exhibit specific behaviour.

Still life
Constructs that have reached a state that will not change between generations without interaction
from other constructs.

Oscillating constructs
Constructs that cycle between two or more states over a given number of generations.

Moving constructs
Constructs that move across the grid over time, usually by means of an oscillating set of states.

Computation

Can perform simple computations using glider guns to create ”sliding block memory” from which logic
gates can be simulated.

Can create state machines (using sliding block memory as a counter) to form a universal Turing machine.

7.3 Variants

3D cellular automata
Same principal as 1D and 2D but with a larger neighborhood.

Different cell shapes
Assuming a shape can be oriented on a grid (tessellated) and assigned a neighbourhood then it can
be used in a cellular automation.

e.g. Triangles and hexagons have been used.

Probabilistic rules
Have a set of rules that have probability weightings instead of being purely deterministic.

Continuous cellular automata
Using continuous values rather than discreet states.

Nested cellular automata
Used to simulate a hierarchical system.

e.g. County → City → Person → Cell

7.4 Applications

Computer graphics
Performing filter computations to an image.

e.g. Blurring is an operation that modifies each pixel depending on the states of the pixels in its
neighbourhood.

Game development
Used for world generation, given a random seed (states in initial generation).

Cryptography
One way function used for public key encryption.

Given a rule set it is easy to calculate future states given an early generation, but very difficult to
calculate past states given a later generation.

Friday 20th January, 2017 (08:26) 25

CSC3423 Biocomputing

Simulation
Various biological and physical simulations.

e.g. Pattern formation, cell development, fluid flow, etc.

Fractals
Generation of patterns based on simple self replication rules.

Friday 20th January, 2017 (08:26) 26

CSC3423 Biocomputing

8 Membrane Computing

8.1 Metaphor

• Cell is a hierarchical set of compartments

• In each compartment certain chemical reactions happen

• Under certain conditions, elements 9molecules) can move between compartments

8.2 Algorithm

• Paradigm designed for simulation

• A simulation consists of:

– A set of hierarchical compartments

– A set of objects that can exist in each compartment and units of each object existing in each
compartment

– Rules that can transform some objects into others and move objects between compartments

– Stochastic constant (likelihood of activation) for each rule

• In a simulation the rules are applied to a given starting point (quantity of each object in each
compartment)

• Multiple runs are usually performed and results combined

Friday 20th January, 2017 (08:26) 27

CSC3423 Biocomputing

9 DNA Computing

Performing computations on biological devices, specifically DNA.

9.1 Structure of DNA

• Asymmetric double helix

• Complimentary strands A-T and C-G

• 5′ denotes the front of a motif (upstream)

• 3′ denotes the end of a motif (downstream)

9.2 Features useful for computation

• Massive parallelism

– Small amount of DNA contains many strands

– When strings are randomised then a small volume of DNA will contain a large number of
unique strings

• Complementarity

– Know that if a string binds to a larger string then the larger string must contain the comple-
mentarity string to the smaller string

– e.g. if 5′ ACGT 3′ binds to a longer string S, you know that S contains the string 3′ TGCA
5′

9.3 Experimental Techniques

9.3.1 Polymerase Chain Reaction

Used to replicate DNA, creating many copies of the base pairs.

1 Separate two base strands at low heat

2 Add base pairs, primer sequences and DNA polymerise

• Creates double stranded DNA from single strand

• Primer sequence creates seed from which the double stranded DNA grows

3 Repeat, DNA grows exponentially

9.3.2 Electrophoresis

• Phosphate backbone of DNA is negatively charged

• Migration of DNA to agaraose gel shows visible pores on the gel surface

• An electric field is placed over the DNA to force migration

• Size of DNA fragments is determined by pore size

Friday 20th January, 2017 (08:26) 28

CSC3423 Biocomputing

9.4 Solving the Hamiltonian Path Problem

Given a directed graph G = (V,E), Vstart and Vend, is there a directed path starting at Vstart and
finishing at Vend that visits all vertices exactly once.

9.4.1 Non-deterministic approach

1 Generate many random paths through G

2 Keep only paths that start at Vstart and end at Vend

3 Keep only paths with length n = |V |

4 Keep only paths that visit each vertex once

5 If any paths remain then result is true, if no paths remain result is false

Exploits:

Massive parallelism to take care of non-deterministic nature of algorithm

Complementarity is used to select and filter solutions

9.4.2 Stage 1: Initialisation

Vertex and edge encoding

• A vertex is encoded by a 20-mer length string

• An edge is encoded by the back 10-mer and the front 10-mer from the two connected vertices

• Edges for V0 (Vstart) and Vn (Vend) contain the full string for the start and end vertices (i.e. so are
30-mer or 40-mer)

Building random paths

50 picomol of the complimentary sequence (v′) (except V0 and Vn) is mixed with 50 picomol of each edge
encoding

9.4.3 Stage 2: PCR amplification

• Implements step 2

• Amplify using primers: V0 and V ′
n

• PCR will replicate everything with V0 and Vn at the ends

9.4.4 Stage 3: Selecting paths of length |V |

• Double stranded DNA that represents paths going through exactly n vertices are selected

• Based on size measured through electrophoresis

Friday 20th January, 2017 (08:26) 29

CSC3423 Biocomputing

9.4.5 Stage 4: Selecting paths that visit all vertices

• Double strands from stage 3 are denatured

• Put into a mix with V ′
1 which are magnetically attached to beads

• Strands containing V1 anneal to V ′
1

• Strands not containing V1 are washed away

• Repeat for all vertices (except V0 and Vn)

9.4.6 Stage 5: Result

• Remaining strands after stage 4 undergo PCR and electrophoresis

• If any strands remain in the gel then G has a Hamiltonian path

9.5 DNA origami

• Forcing DNA to form complex shapes and structures by giving it a certain sequence

• Structures formed of:

Scaffold
A long single stranded DNA string

Staples
A set of short unique strings that bind to the scaffold in specific places

• Designed using the De Brujin sequence

Friday 20th January, 2017 (08:26) 30

	Overview
	Genetic Algorithms
	Biological Inspiration
	Overview
	Population
	Evaluation
	Selection
	Roulette Wheel Selection
	Stochastic Universal Sampling
	Tournament Selection
	Truncation Selection
	Comparison of selection methods

	Crossover
	Mutation
	Replacement
	Knowledge Representation
	Tuning
	Machine Learning
	Parallel Genetic Algorithms

	Genetic Programming
	Program Representation
	Initialisation
	Evaluation/Execution
	Crossover
	Mutation
	Bloat
	Applications

	Neural Networks
	Multi Layer Perceptron
	Learning Task

	Self Organised Maps
	Deep Learning
	Training semi-supervised networks
	Restricted Boltzmann machine
	Convolutional Neural Network

	Memetic Algorithms
	Motivation
	Design considerations

	Swarm Intelligence
	Ant Colony Optimisation
	Example: Travelling Salesperson Problem

	Particle Swarm Optimisation
	Neighbourhood types
	Algorithm

	Cellular Automata
	1D eight rule CA
	2D cellular automata
	Neighbourhoods
	The Game Of Life

	Variants
	Applications

	Membrane Computing
	Metaphor
	Algorithm

	DNA Computing
	Structure of DNA
	Features useful for computation
	Experimental Techniques
	Polymerase Chain Reaction
	Electrophoresis

	Solving the Hamiltonian Path Problem
	Non-deterministic approach
	Stage 1: Initialisation
	Stage 2: PCR amplification
	Stage 3: Selecting paths of length |V|
	Stage 4: Selecting paths that visit all vertices
	Stage 5: Result

	DNA origami

