CSC3221 Programming For Games

Contents

[L Data Types and Variables|

2 Polymorphism|

Friday 20*" January, 2017 (08:25) 1

CSC3221 Programming For Games

1 Data Types and Variables

1.1 Types

A selection of data types that always seem to be on the exam:
int a
An integer.

int *a
A pointer to an integer.

char a[3]
An array of characters of length 3.

int *a[3]
An array of pointers to integers of length 3.

int (xa) [3]
A pointer to an array of integers of length 3.

int char *(xa) []
A pointer to an array of pointers to characters.

const int * a
A pointer to a const integer.

int * const a
A const pointer to an integer

1.2 Declaration vs Definition
Declaration
e Provides basic attributes: type and name

e Does not allocate storage (for variables)

e c.g. extern int a;

Definition

e Defines all attributes of a symbol

e c.g. int a;

A symbol being declared but never defined results in a linker error.

Friday 20*" January, 2017 (08:25) 2

20

21

22

23

24

26

27

28

29

30

31

32

CSC3221 Programming For Games

2 Polymorphism

class ITouhou {

public:
ITouhou() { cout << "ITouhou (" << name() << ") constructed" << endl; }
virtual “ITouhou() { cout << "ITouhou destructed" << endl; }
virtual string name() const { return "ITouhou"; };

};

class Youkai : public virtual ITouhou {

public:
Youkai() : ITouhou() { cout << "Youkai (" << name() << ") constructed" << endl; }
virtual “Youkai() { cout << "Youkai destructed" << endl; }
virtual string name() const { return "Youkai'; };

};

class IFlyable: public virtual ITouhou {
public:
IFlyable() { cout << "IFlyable (" << name() <<") constructed" << endl; }
virtual “IFlyable() { cout << "IFlyable destructed" << endl; }
virtual void fly() { cout << "IFlyable::fly()" << endl; }
virtual string name() const { return "IFlyable"; }

};

class Yuuka : public Youkai, public IFlyable {
public:
Yuuka() : Youkai(), IFlyable()

{ cout << "Yuuka " << name() << " constructed" << endl; }
virtual “Yuuka() { cout << "Yuuka destructed" << endl; }
virtual string name() const { return "Yuuka"; }
virtual void fly() { cout << "Yuuka::fly()" << endl; }

+;

class Reimu : public virtual ITouhou, public IFlyable
{

public:

Reimu() : ITouhou(), IFlyable()

Listing 1: Polymorphism example classes

Friday 20*" January, 2017 (08:25) 3

CSC3221 Programming For Games

virtual “Reimu() { cout << "Reimu destructed" << endl; }
virtual string name() const { return "Reimu"; }

};

20

21

22

23

24

25

26

27

28

29

30

31

32

33

int main() {

ITouhou *yl = new Yuuka();
delete yi;

cout << "=====" << endl;

Youkai *y2 = new Yuuka();
delete y2;

cout << "=====" << endl;
Yuuka *y3 = new Yuuka(Q);
y3->fly () ;

delete y3;

cout << '"=====" << endl;
IFlyable *y4 = new Yuuka();
y4->fly () ;

delete y4;

cout << "=====" << endl;
IFlyable *rl = new Reimu();
r1->fly(Q;

delete ri;

return O;

Listing 2: Polymorphism example main ()

Friday 20*" January, 2017 (08:25)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

CSC3221 Programming For Games

ITouhou (ITouhou) constructed
Youkai (Youkai) constructed
IFlyable (IFlyable) constructed
Yuuka Yuuka constructed

Yuuka destructed

IFlyable destructed

Youkai destructed

ITouhou destructed

ITouhou (ITouhou) constructed
Youkai (Youkai) constructed
IFlyable (IFlyable) constructed
Yuuka Yuuka constructed

Yuuka destructed

IFlyable destructed

Youkai destructed

ITouhou destructed

ITouhou (ITouhou) constructed
Youkai (Youkai) constructed
IFlyable (IFlyable) constructed
Yuuka Yuuka constructed

Yuuka: :f1y ()

Yuuka destructed

IFlyable destructed

Youkai destructed

ITouhou destructed

ITouhou (ITouhou) constructed
Youkai (Youkai) constructed
IFlyable (IFlyable) constructed
Yuuka Yuuka constructed

Yuuka: :f1y ()

Yuuka destructed

IFlyable destructed

Youkai destructed

ITouhou destructed

ITouhou (ITouhou) constructed
IFlyable (IFlyable) constructed
Reimu (Reimu) constructed
IFlyable::f1y()

Reimu destructed

IFlyable destructed

ITouhou destructed

Listing 3: Polymorphism example output

Friday 20*" January, 2017 (08:25)

CSC3221 Programming For Games

Notes:

e The closest implementation of a virtual function to the type of the instance will be called

e The implementation of a function not declared virtual will be that of the type (not the type if
the instance)

e For this reason destructors should always be virtual

e Virtual inheritance is used to avoid the ”diamond pattern” problem when a class inherits from
multiple children of a single base class

e Without virtual inheritance this results in multiple copies of the base class being created

Friday 20*" January, 2017 (08:25) 6

	Data Types and Variables
	Types
	Declaration vs Definition

	Polymorphism

